The following article is a collection of data intended to give the reader a general overview of information related to a relatively new subject within the gear cutting industry. Although carbide hobbing itself is not necessarily new, some of the methods and types of application are. While the subject content of this article may be quite broad, it should not be considered all-inclusive. The actual results obtained and the speeds, feeds, and tool life used in carbide hobbing applications can vary significantly.
What follows is Part 2 of a three-part article covering the principles of gear lubrication. Part 2 gives an equation for calculating the lubricant film thickness, which determines whether the gears operate in the boundary, elastohydrodynamic, or full-film lubrication regime. An equation for Blok's flash temperature, which is used for predicting the risk of scuffing, is also given.
The quality of a gear and its performance is determined by the following five parameters, which should be specified for each gear: Pitch diameter, involute form, lead accuracy, spacing accuracy, and true axis of rotation. The first four parameters can be measured or charted and have to be within tolerance with respect to the fifth. Pitch diameter, involute, lead, and spacing of a gear can have master gear quality when measured or charted on a testing machine, but the gear might perform badly if the true axis of rotation after installation is no longer the same one used when testing the gear.
The quality of gearing is a function of many factors ranging from design, manufacturing processes, machine capability, gear steel material, the machine operator, and the quality control methods employed. This article discusses many of the bevel gear manufacturing problems encountered by gear manufacturers and some of the troubleshooting techniques used.
There are different types of spiral bevel gears, based on the methods of generation of gear-tooth surfaces. A few notable ones are the Gleason's gearing, the Klingelnberg's Palloid System, and the Klingelnberg's and Oerlikon's Cyclo Palliod System. The design of each type of spiral bevel gear depends on the method of generation used. It is based on specified and detailed directions which have been worked out by the mentioned companies. However, there are some general aspects, such as the concepts of pitch cones, generating gear, and conditions of force transmissions that are common for all types of spiral bevel gears.
This is a three-part article explaining the principles of gear lubrication. It reviews current knowledge of the field of gear tribology and is intended for both gear designers and gear operators. Part 1 classifies gear tooth failures into five modes and explains the factors that a gear designer and operator must consider to avoid gear failures. It defines the nomenclature and gives a list of references for those interested in further research. It also contains an in-depth discussion of the gear tooth failure modes that are influenced by lubrication and gives methods for preventing gear tooth failures.
In Part I differences in pitting ratings between AGMA 218, the draft ISO standard 6336, and BS 436:1986 were examined. In this part bending strength ratings are compared. All the standards base the bending strength on the Lewis equation; the ratings differ in the use and number of modification factors. A comprehensive design survey is carried out to examine practical differences between the rating methods presented in the standards, and the results are shown in graphical form.
The merits of CBN physical characteristics over conventional aluminum oxide abrasives in grinding performance are reviewed. Improved surface integrity and consistency in drive train products can be achieved by the high removal rate of the CBN grinding process. The influence of CBN wheel surface conditioning procedure on grinding performance is also discussed.
A study of AGMA 218, the draft ISO standard 6336, and BS 436: 1986 methods for rating gear tooth strength and surface durability for metallic spur and helical gears is presented. A comparison of the standards mainly focuses on fundamental formula and influence factors, such as the load distribution factor, geometry factor, and others. No attempt is made to qualify or judge the standards other than to comment on the facilities or lack of them in each standard reviewed. In Part I a comparison of pitting resistance ratings is made, and in the subsequent issue, Part II will deal with bending stress ratings and comparisons of designs.
A universal gear is one generated by a common rack on a cylindrical, conical, or planar surface, and whose teeth can be oriented parallel or skewed, centered, or offset, with respect to its axes. Mating gear axes can be parallel or crossed, non-intersecting or intersecting, skewed or parallel, and can have any angular orientation (See Fig.1) The taper gear is a universal gear. It provides unique geometric properties and a range of applications unmatched by any other motion transmission element. (See Fig.2) The taper gear can be produced by any rack-type tool generator or hobbing machine which has a means of tilting the cutter or work axis and/or coordinating simultaneous traverse and infeed motions.