Recently it has been suggested that the transverse plane may be very useful in studying the kinematics and dynamics of spiral bevel gears. The transverse plane is perpendicular to the pitch and axial planes as shown in Fig. 1. Buckingham has suggested that a spiral bevel gear may be viewed as a limited form of a "stepped" straight-tooth gear as in Fig. 2. The transverse plane is customarily used in the study of straight toothed bevel gears.
The power of high speed gears for use in the petrochemical industry and power stations is always increasing. Today gears with ratings of up to 70,000kW are already in service. For such gears, the failure mode of scoring can become the limiting constraint. The validity of an analytical method to predict scoring resistance is, therefore, becoming increasingly important.
Transmission of power between nonparallel shafts is inherently more difficult than transmission between parallel shafts, but is justified when it saves space and results in more compact, more balanced designs. Where axial space is limited compared to radial space, angular drives are preferred despite their higher initial cost. For this reason, angular gear motors and worm gear drives are used extensively in preference to parallel shaft drives, particularly where couplings, brakes, and adjustable mountings add to the axial space problem of parallel shaft speed reducers.
The search for greater gear life involves improvement in cost, weight and increased power output. There are many events that affect gear life, and this paper addresses those relating to fatigue, gear tooth pitting, fatigue strength losses due to the heat treating processes and shot peening technique. The capability of shot peening to increase fatigue strength and surface fatigue life eliminate machine marks which cause stress risers, and to aid in lubrication when properly controlled, suggests increased use and acceptance of the process.
Mechanical efficiency is an important index of gearing, especially for epicyclic gearing. Because of its compact size, light weight, the capability of a high speed ratio, and the ability to provide differential action, epicyclic gearing is very versatile, and its use is increasing. However, attention should be paid to efficiency not only to save energy, but sometimes also to make the transmission run smoothly or to avoid a self-locking condition.
Gears are currently run at high speed and under high load. It is a significant problem to develop lubricants and gears with high load-carrying capacity against scoring. The particles of molybdenum disulfide have been considered to increase the scoring resistance of the gears. The wear characteristics and the scoring resistance of the gears lubricated with MoS2 paste and MoS2 powder have been investigated. (1) However, there are few investigations on the performance of the gears coated with MoS2 film with respect to scoring.
Below are listed a variety of commonly used constants arranged numerically to permit ease of reference. Wherever an asterisk (*) is shown, the constant is exact as given, it being generally a mathematical constant or one fixed by definition. In cases where the first constant listed is followed by another in parenthesis, the first is the round number generally used, while the second is the more exact value.
Anyone involved in the design, manufacture and use of gears is concerned with three general characteristics relative to their application: noise, accuracy, and strength or surface durability. In the article, we will be dealing with probably the most aggravating of the group, gear noise.
The manufacturing process to produce a gear essentially consist of: material selection, blank preshaping, tooth shaping, heat treatment, and final shaping. Only by carefully integrating of the various operations into a complete manufacturing system can an optimum gear be obtained. The final application of the gear will determine what strength characteristics will be required which subsequently determine the material and heat treatments.
It has previously been demonstrated that one gear of an interchangeable series will rotate with another gear of the same series with proper tooth action. It is, therefore, evident that a tooth curve driven in unison with a mating blank, will "generate" in the latter the proper tooth curve to mesh with itself.